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We propose asymptotically optimal algorithms for the job shop scheduling and 
packet routing problems. We propose a fluid relaxation for the job shop scheduling 
problem in which we replace discrete jobs with the flow of a continuous fluid. We 
compute an optimal solution of the fluid relaxation in closed form, obtain a lower 
bound C,,, to the job shop scheduling problem, and construct a feasible schedule 
from the fluid relaxation with objective value at most C,,,,, + O ( c ) ,  where the 
constant in the O(.) notation is independent of the number of jobs, but it depends 
on the processing time of the jobs, thus producing an asymptotically optimal 
schedule as the total number of jobs tends to infinity. If the initially present jobs 
increase proportionally, then our algorithm produces a schedule with value at most 
C,,, + O(1). For the packet routing problem with fixed paths the previous algo- 
rithm applies directly. For the general packet routing problem we propose a linear 
programming relaxation that provides a lower bound C,,,, and an asymptotically 
optirnal algorithm that uses the optimal solution of the relaxation with objective 
value at most C,,,, + O ( c ) .  Unlike asymptotically optirnal algorithms that 
rely on probabilistic assumptions, our proposed algorithms make no probabilistic 
assumptions and they are asymptotically optimal for all instances with a large 
number of jobs (packets). In computational experiments our algorithms produce 
schedules which are within 1% of optimality even for moderately sized problems. 
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1. INTRODUCTION 

The job shop scheduling and the packet routing problems are funda- 
mental problems in operations research and computer science. The job 
shop scheduling problem is the problem of scheduling a set of I job types 
on J machines. Job type i consists of .Ti stages, each of which must be 
completed on a particular machine. The pair (i, j )  represents the j t h  stage 
of the ith job and has processing time pi, j .  The completion time of job i is 
the completion time of the last stage .Ti of job type i. Assuming that we 
have yli jobs of type i, the objective is to find a schedule that minimizes the 
maximum completion time, called the makespan, subject to the following 
restrictions: 

1. The schedule must be nonpreemptive. That is, once a machine 
begins processing a stage of a job, it must complete that stage before doing 
anything else. 

2. Each machine may work on at most one task at any given time. 

3. The stages of each job must be completed in order. 

The classical job shop scheduling problem involves exactly one job from 
each type, i.e., the initial vector of job types is (1,1,. . . , 1). The job shop 
scheduling problem is a classical NP-hard problem, notoriously difficult to 
solve even in relatively small instances. As an example, a specific instance 
involving 10 machines and 10 jobs posed in a book by Muth and Thompson 
1111 in 1963 remained unsolved for over 20 years until solved by Carlier 
and Pinson [2] in 1985. 

The packet routing problem in a communication network ( V , d )  is the 
problem of routing a collection of packets from a source node to a 
destination node. It takes one time unit for a packet to traverse an edge in 
d, and only one packet can traverse a given edge at a time. As in the job 
shop scheduling problem, the objective is to find a schedule that minimizes 
the time, called the makespan, that all packets are routed to their destina- 
tions. For the case that the paths along which packets need to be routed 
are given, the problem can be modeled exactly as a job shop scheduling 
problem. However, when we can select the paths along which to route 
packets, the problem is more complicated as it involves both routing (path 
selection) and sequencing (which packet each edge process) decisions. 

Our overall approach for these problems relies on two ideas from two 
distinct communities. First, we consider a relaxation for the job shop 
scheduling problem called the fluid control problem, in which we replace 
discrete jobs with the flow of a continuous fluid. The motivation for this 
approach comes from optimal control of multiclass queueing networks. 
Multiclass queueing networks are stochastic and dynamic versions of job 
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shops. In recent years there has been considerable progress in solving the 
fluid control problem in multiclass queueing networks. Focusing on objec- 
tive functions that minimize a weighted combination of the number of jobs 
at the various machines, as opposed to makespan, Avram, Bertsimas, and 
Ricard [l] show that by using the Pontryagin maximum principle, we can 
find the optimal control explicitly. However, the description of the optimal 
control, while insightful for the original problem, involves the enumeration 
of an exponential number of cases. Luo and Bertsimas [lo], building upon 
the work of Pullan [12], use the theory of continuous linear programming 
to propose a convergent numerical algorithm for the problem that can 
solve efficiently problems involving hundreds of machines and job types. 
For the objective we consider (minimize the length of the schedule, i.e., 
the maximum completion time) the optimal solution of the fluid control 
problem can be computed in closed form and provides a lower bound C,,, 
to the job shop scheduling problem. Weiss 1171 has considered and solved 
the makespan objective for a fluid control problem with arrivals. Our proof 
of the fluid control problem without arrivals follows along similar lines. 

The second idea of the paper is motivated by the considerable progress 
in the deterministic scheduling community in providing approximation 
algorithms for scheduling problems that rounds the solution of a linear 
programming relaxation of the scheduling problem. Shmoys, Stein, and 
Wein [15], Goldberg et al. [4], and Feige and Scheideler [3] provide 
algorithms that are within a multiplicative logarithmic guarantee from the 
optimal solution value. Very recently Jansen, Solis-Oba, and Sviridenko [6] 
provided a polynomial time approximation scheme. For a review of this 
approach see Hall [5] and Karger, Stein, and Wein [7]. However, the paper 
closest in spirit to the current work is a scheduling algorithm for job shop 
problems constructed by Sevast2anov [ 131 (see also [ 141). Sevastlanov’s 
algorithm is based on an interesting geometric method, unrelated to the 
methods of the current paper, and produces a schedule with length 
C,,,, + O(l), and as a result, is asymptotically optimal as the number of 
jobs tends to infinity. Our algorithm is significantly simpler than 
Sevast2anov’s and produces superior bounds for a variety of instances. For 
example, for the 10 by 10 instance defined in Muth and Thompson [ l l ]  
with the same number n of jobs for every job type, then the bound for our 
algorithm is always stronger for all n. We compare the bounds given by 
our methods and those by Sevastlanov in Section 4.3. 

We use the optimal solution of the fluid control problem to construct a 
feasible schedule with the objective value C,,, + O ( c ) .  If the initially 
present jobs increase proportionally, then our algorithm produces a sched- 
ule with a value of at most C,,, + O(1). Similarly, for the packet routing 
problem we propose a linear programming relaxation that provides a lower 
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bound C,,,, and use its solution to construct a feasible schedule with 
objective value C,,, + O ( c ) .  We note that the constant in the O(.) 
notation is independent of the number of jobs, but it does depend on the 
processing times of the jobs. This implies that as the total number of jobs 
(packets, respectively) tends to infinity, the proposed algorithm is asymp- 
totically optimal. Unlike asymptotically optimal algorithms that rely on 
probabilistic assumptions, the above algorithm makes no probabilistic 
assumptions, and it is asymptotically optimal for all instances with a large 
number of jobs (packets, respectively). The classical result in this area is 
the work of Karp [8], who provided an asymptotically optimal algorithm for 
the traveling salesman problem when the points are randomly and uni- 
formly distributed in the unit square in the Euclidean plane. 

The combinatorial structure of the job scheduling problem makes the 
problem very complicated to solve when there is a small number of jobs in 
the system. Interestingly, the results of the paper indicate that as the 
number of jobs increases, the combinatorial structure of the problem is 
increasingly less important, and as a result, a fluid approximation of the 
problem becomes increasingly exact. Similarly, the packet routing problem 
has an even richer combinatorial structure. The results of the paper also 
imply that a continuous approximation to the problem is asymptotically 
exact. 

The paper is structured as follows. In Section 2, we formulate the job 
shop scheduling problem and describe the notation. In Section 3, we 
introduce the fluid control problem for the job shop scheduling problem 
and solve it in closed form. In Section 4,  we present and analyze the 
rounding algorithm, called the synchronization algorithm. We also provide 
some computational results and contrast our bounds with those by 
Sevast2anov [13]. In Section 5, we address packet routing in communica- 
tion networks with fixed paths as an application of job shop scheduling. In 
Section 6, we propose an asymptotically optimal algorithm for the general 
packet routing problem in communication networks. Section 7 contains 
some concluding remarks. 

2. PROBLEM FORMULATION AND NOTATION 

In the job shop scheduling problem there are J machines, al, a2 , .  . . , a,, 
which process I different types of jobs. Each job type is specified by the 
sequence of machines to be processed on and the processing time on each 
machine. In particular, jobs of type i, i = 1 , 2 , .  . . , I ,  are processed on J ,  
machines a;, a;, . . . , a,: in that order. Let J,,, = max, JL.  The time to 
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process a type i job on machine a; is denoted by p i , k .  Throughout the 
paper we assume that pi,k are integers. 

The jobs of type i that have been processed on machines a;, . . . , a,- 
but not on machine a; are queued at machine a; and are called type i 
jobs in stage k. The set of jobs in stages k 2 2 in any specific machine a;. 
is called a noninitial queue in machine a;.. In particular, at time zero all 
noninitial queues are empty. 

We will also think of each machine a;. as a collection of all types and 
stage pairs that it processes. Namely, for each j = 1 , 2 , .  . . , J 

i 

There are ni jobs for each type i initially present at their corresponding 
first stage. Our objective is to minimize the makespan, i.e., to process all 
the n = n1 + ng + ... +n, jobs on machines al,. . . , q,, so that the time it 
takes to process all the jobs is minimized. 

Each machine a;. has a certain processing time required to process jobs 
that eventually come to this machine. Specifically, for machine a;. this time 
is 

The quantity Cj is called the congestion of machine a;.. We denote the 
maximum congestion by 

C,,, = max Ci. 
1sjs.l 

The following proposition is immediate. 

problem satisfies 
PROPOSITION 1. The minimum makespan C" of the job shop scheduling 

In the next section we consider a fluid (fractional) version of this 
problem, in which the number of jobs ni of type i can take arbitrary 
positive real values, and machines are allowed to work simultaneously on 
several types of jobs (the formal description of the fluid job shop schedul- 
ing problem is provided in the next section). For the fluid control problem 
we show that a simple algorithm leads to a makespan equal to C,,, and 
therefore is optimal. 
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3. THE FLUID JOB SHOP SCHEDULING PROBLEM 

In this section, we describe a fluid version of the job scheduling 
problem. The input data for the fluid job shop scheduling problem are the 
same as for the original problem. There are I processing machines 
a,, a2,  . . . , aJ, I job types, each specified by the sequence of machines a;, 
k = 1,2, .  . . , .Ti, and the sequence of processing times pi,k for type i jobs in 
stage k.  We introduce the notation p i ,k  = l , ’~; ,~ which represents the 
rate of machine a; on a type i job. The number of type i jobs initially 
present, denoted by xi, takes nonnegative real values. 

In order to specify the fluid control problem we introduce some nota- 
tion. We let ~ ; , ~ ( t )  be the total (fractional in general) number of type i 
jobs in stage k at time t .  We call this quantity the fluid level of type i in 
stage k at time t .  We denote by q,k(t)  the total time the machine a; 
works on type i jobs in stage k during the time interval [0, t l .  Finally 1CA) 
denotes the indicator function for the set A. 

The fluid control problem of minimizing makespan can be formulated as 
follows: 

minimize ( I (  c x i , k ( t ) ~ )  dt (1) 
1 5 ;  5 I ,  1 5 k 5 J, 

subject to xi, ,( t )  = xi - pi, ,Ti, ,( t )  , i = 1 , 2 , .  . . , I ,  t 2 0, (2) 

X i . k ( t )  = P i . k - I T , k - l ( t >  - PLi,kT,k(tL 

k = 2 , .  . . , I ; ,  i = 1 , 2 , .  . . , I ,  t 2 0,  (3)  

c ( T , k ( t 2 )  - T . k ( t l ) )  5 t 2  - t l ,  
(i . k ) E u, 

vt2,  t , ,  t , , t ,  2 0, j = 1 , 2 , .  . . , I .  (4) 

(5) X i , & )  2 0, T , & )  2 0. 

The objective function (1) represents the total time that at least one of 
the fluid levels is positive. It corresponds to the minimum makespan 
schedule in the discrete problem. Equations (21, (3) represent the dynamics 
of the system. The fluid level of type i in stage k at time t is the initial 
number of type i jobs in stage k ( x i  for k = 1, zero for k # 1) plus the 
number of type i jobs processed in stage k - 1 during [0, t ]  (given by 
pi, k p  k p  ,(t)), minus the number of type i jobs processed in stage k 
during [0, t ]  (given by ~ ~ , ~ q , ~ ( t ) ) .  Constraint (4) is just the aggregate 
feasibility constraint for machine q. 
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Similar to the definition for the discrete problem, we define congestion 
in station q as 

and the maximal congestion as 

C,,, = max Ci. 
1sjs.l 

(7) 

We next show that the fluid control problem can be solved in closed form. 

The fluid control problem (1) has an optimal value equal 
to the maximum congestion C,,,,. 

We first show that the maximum congestion C,,, is a lower 
bound on the optimal value of the control problem. For any positive time t 
and for each i I I ,  k I .Ti, we have from (21, (3) :  

PROPOSITION 2. 

Pro08 

k 

C X i , l ( t )  = " i  - P i , k T , k ( t ) .  
I =  1 

For each station ai we obtain 

k 

C ~ i , k  C x i , / ( t >  = C P i . k x i  - C ~ , k ( t )  2 Cj - t ,  
( i , k ) s q  I = 1  ( i . k ) s u j  ( i ,  k ) s  uj 

where the last inequality follows from the definition of Cj and constraint 
(4) applied to t ,  = 0, t ,  = t .  It follows then, that the fluid levels are 
positive for all times t smaller than Ci. Therefore, the objective value of 
the optimal control problem is at  least maxi Ci = C,,,. 

We now construct a feasible solution that achieves this value. For each 
i I I ,  k I Ji and each t I C,,,, we let 

xi 
Xi,,( t )  = xi - Pi,,T,,(t) = xi - - t ,  i = l , . . . , I ,  

x&) = 0, k = 2 , 3  , . . . ,  J , , i =  1 , . . . , I .  

For all t 2 C,,, we set T , k ( t )  = p i , k ~ i ,  ~ ~ , ~ ( t )  = 0. Clearly, this solution 
has an objective value equal to C,,,. We now show that this solution is 
feasible. It is nonnegative by construction. Also by construction, Eq. (2) is 

Cmax 
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satisfied for all t I C,,,,. In particular, X,,~(C, , ,~)  = 0, i = 1,2 , .  . . , I. 
Moreover, for all i, k = 2,3 , .  . . , J, and t I C,,,, we have 

- 

and Eq. (3) is satisfied. 
ai, we have 

Finally, for any t ,  < t ,  I C,,, and for any machine 

and constraint (4) is satisfied. Note that for the constructed solution 
X ~ , ~ ( C , , ~ , , )  = 0 for all i I I ,  k I .Ti. Therefore, the feasibility for times 
t 2 C,,,, follows trivially. 

The constructed solution has a structure resembling a processor sharing 
policy. It calculates the maximal congestion C,,, and allocates a propor- 
tional effort to different job types within each machine to achieve the 
target value C,,,,. Such an optimal policy is possible, since we relaxed the 
integrality constraint on the number of jobs and allowed machines to work 
simultaneously on several job types. In the following section, we use the 
fluid solution to construct an asymptotically optimal solution for the 
original discrete job shop scheduling problem. 

I 

4. AN ALGORITHM FOR THE JOB SHOP 
SCHEDULING PROBLEM 

In this section, we consider the original job shop scheduling problem, 
described in Section 2. Recall that we are initially given ni jobs for each 
type i, i = 1,2 , .  . . , I ,  where n,  is some nonnegative integer. Station q has 
congestion Cj given by C(i ,k)t  r r ipi ,kni .  Again, let C,,,, denote the maxi- 
mal congestion. Let R be a certain positive real value. An exact value for 
R will be specified later. For each job type i we let 
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For each station a;. let 

Namely, q is the workload of station a;. when only one job per type is 
present. Finally, let 

U,,,, = max q 
1sjsJ (9) 

The proposed algorithm revisits the schedule in time intervals of length 

For each interval [m(R + qnax), 
( m  + l)(R + qnaX)], m = O , l , .  . . , of length R + U,,,,, each machine a ~ ,  
and each pair (i, k )  E a/, machine 9 processes exactly a, jobs of type i 
(which takes p ,  k a ,  time units) and idles 

a + &ax.  

THE SYNCHRONIZATION ALGORITHM. 

a + uniax - c PI kar  
( z  k ) E q  

time units. If for some i ,  at time m ( a  + Urnax), the number of type i jobs 
in machine a/ is less than a,, then machine a/ processes all the available 
type i jobs and idles for the remaining time. 

Note that the synchronization algorithm produces a feasible schedule, 
since for each machine a/ and each (i, k )  E 9, it takes p ,  k u l  time units to 
process a, jobs of type i. Since 

it follows that the schedule is indeed feasible. 
In the fluid relaxation, each job ( i , k )  receives (pi,kai/Cnlax)% of the 

effort from the corresponding machine. The synchronization algorithm 
over each interval of length R + qnax allocates time a ; ~ ; , ~  on jobs (i, k) .  
Thus, job (i, k )  receives 

of the effort from the corresponding machine. We used approximation in 
the last equality, since in the synchronization algorithm we deal with 
discrete jobs. Intuitively, the synchronization algorithm gives essentially 
the same amount of effort as in the fluid relaxation. 
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The next theorem shows that the algorithm does a good job of synchro- 
nizing and pipelining the total workload in the system and achieves 
asymptotic optimality. 

Consider a job shop schedulingproblem with I job types and THEOREM 1. 
J machines ul, uz, . . . , uJ. Given initially ni jobs of type i = 1 , 2 , .  . . , I ,  the 
synchronization algorithm with R = Jc,,, UmaX/Jmax produces a schedule 
with makespan time C,  such that 

where U,,, is defined by (9). In particular, 

as 

I 

E n ,  + 

i =  1 

where C" is the optimal makespan. In 
lengths at each station a;. are at most 

urnax Cmax d Jmax 

m ,  

addition, all the noninitial queue 

+ U*,ax. ( 12) 

Pro05 For each i I I ,  k I J, and each integer time t ,  let &.,,(t) denote 
the number of type i jobs in stage k (waiting to be processed on the 
machine a;). Note that & , k ( 0 )  = 0 for all k 2 2. For each i ,  machine a; 
will process exactly a j  jobs during the interval [0, R + Urnax]. 

Therefore, 

. .  
Also, for each i machines a;, ah will process exactly a;  jobs during the 
interval [ R + U,,,, , 2(R + qnax)]. Therefore, 
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Similarly, we observe that for each (i, k )  E a;., machine a;. does not 
receive type i jobs until time t = ( k  - l)(R + U,,,,), and during each 
subsequent interval [m(R + Unlax),(m + l)(R + qnax)], m 2 k - 1 it re- 
ceives and processes exactly a;  jobs of type i, until no new jobs of type i 
arrive. Let 

Then 

for all i. Therefore, all jobs leave the initial stage during the time interval 
10, TI. 

We next estimate the time to process all Cf= jobs initially present in 
the system. We tag a given job 8 of type i. This job, as shown in (141, 
leaves the first stage (i, 1) at some time not bigger than T.  

Given any k 4 J,, suppose job 8 arrives at the kth stage at some time 
interval [(rn - l)(R + Umax),m(R + Unlax>1. All the type i jobs that ar- 
rived at stage k before time (rn - l)(R + U,,,,) have been processed, and 
job 8 is one of the a, jobs of type i that arrived at stage k (machine a;) 
during the time interval [(m - l)(R + qn,,>, m(R + U,,,,>I, from the pre- 
vious stage. During the time interval [m(R + Unlax>,(m + l>(R + Unl,,>1 
machine a; processes a, jobs of type i, so job 8 is in stage k + 1 at time 
(rn + 1)R. We conclude that the delay for job 8 between leaving the first 
stage and being processed at the last machine a( is at most ( J ,  - l>(R + 

Combining this with (14), we conclude that the total delay for the job 8 
U,,,,) 5 (J,,,, - l>(R + U,,,,). 

is at most 

U,,ax C*l,X 

+ Jmax 
- 

R - Cmax + JmaxUniax + 

Recall that we have not specified the value of R. We now select R to be 
the minimizer of the expression above; i.e., 
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Therefore, the total makespan time under the algorithm is at most 

This proves the bound (10). 

total number of jobs Xf= 
Notice that the maximum congestion C,,, tends to infinity, as the initial 

tends to infinity. Therefore, 

- + l  
CH 

Cmax 

as El= + a. From Proposition 1, C,,, is a lower bound on the optimal 
makespan time C". Therefore, (1 1) follows, i.e., the synchronization algo- 
rithm is asymptotically optimal. 

Finally, as we have seen, the number of type i jobs in machine gL is 
never more than a, for k 2 2. As a result, the noninitial queue length in 
machine 9 is at most 

From the integrality of 
queue length in machine 

c a; .  
( i ,  k ) E  0,. k t  2 

processing times, it follows that the noninitial 
9 is at most 

This proves (12). I 
Note that the makespan CH of the synchronization algorithm satisfies 

'H = cnlax + '(c). 
4.1. The Proportional Case 

In this section, we address the case with ni = bin, and bi are integers. In 
this case, we let 0 = m a j  C(i ,k)t  Then C,,,, = n o .  We modify 
slightly the synchronization algorithm in this case: For each interval 
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[ m n , ( m  + l ) 0 ] ,  rn = O , l ,  . . . ,  of length 0, each machine q, and each 
pair ( i ,  k )  E q, machine a;. processes exactly bi jobs of type i (which takes 
pi ,kbi  time units) and idles 

0 - c Pi,kbi 
( i ,  k )  t u, 

time units. 
By following the same analysis as in Theorem 1 ,  we show that the 

modified synchronization algorithm produces a schedule with makespan at 
most 

4.2. Computational Results 

We have implemented three algorithms for the job scheduling problem. 
The first algorithm is the synchronization algorithm (called original fluid 
tracking heuristic in Figs. 1 and 2), the second is the modified synchroniza- 
tion algorithm outlined in the proportional case (called new heuristic for 
uniform N in Figs. 1 and 2), and the third is a final modification of the 
synchronization algorithm, in which the machines do not idle if they do not 
have work to do (called variable omega heuristic in Figs. 1 and 2). We run 
these algorithms on the 10 by 10 instances in Muth and Thompson [ l l ]  
with ni = N jobs present and varied N. Figure 1 shows the performance of 
the synchronization algorithm and its modification for N 5 50, while Fig. 2 
shows the performance of all three algorithms for N I 2500. It is interest- 
ing that for N 2 500, the variable Cl heuristic produces solutions within 
1% from the lower bound. 

4.3. Comparison with Sevast ’janou ’s Algorithm 

Sevast3anov [ 131 has constructed a scheduling algorithm with makespan 
time not exceeding C,,, + (Jmax - l)(JJ&x + 2Jmax - l)pnlaX, where pmax 
= max{pi,k} is the maximal processing time of a single job. We now 
compare this performance bound with the one given by Theorem 1. 

(a) If the total number ofjobs n satisfies n 5 no = ((J,,,, PROPOSITION 3. 
- l)(JJI:ax + ZJ,,,, - 1 ) ) / 3 a ,  then 

+ q n a x  Jmax 

i.e., the upper bound on the makespan time C ,  corresponding to the synchro- 
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FIG. 1. The performance of the synchronization algorithm and its modification for 
N 4 50. 

nization algorithm is superior to the upper bound on the Seuast'janoc schedul- 
ing algorithm. 

(b) If all job types haue the same number n of jobs initially present, 
there are at most Jmax job types, and each job type is processed by any given 
machine at most once, then the bound gicen by the synchronization algorithm 
is always stronger than the bound given by Secast 'janou 's scheduling algo- 
rithm. 

(a) Trivially, qnaX I C,,,, I np,,,,. Then, the left hand side of Pro05 
(15) is smaller than 

Cmax + 2 n P m a x c  + npmax J m a x  . 

Therefore, the left hand side of (15) is smaller than 

Cmax + 2nPmax Jmax 9 

which is less than or equal to 

Cmax + ( J m a x  - 1) ( J J & x  + z ~ m a x  - 1)Pmax 9 

if n I no,  
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FIG. 2. The performance of all three algorithms for N I 2500 
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(b) If all job types have the same number n of jobs initially present, 
i.e., ni = n,  the performance bound of the synchronization algorithm is 

If there are at most .Tn,,, job types, and each job type is processed 
given machine at most once, then U,,,, I .TI,,, pIna,, and thus the 
given by the synchronization algorithm is always stronger. I 

by any 
bound 

For example, for the 10 by 10 instance defined in Muth and Thompson 
[ 111 with the same number n of jobs for every job type, then the bound for 
the synchronization algorithm is always stronger for all n. 

5. THE PACKET ROUTING PROBLEM WITH FIXED PATHS 

In this section, we apply our results on the job shop scheduling problem 
to the problem of packet routing in communication networks. Given a 
directed graph (V,  d) that represents a communication network, there is a 
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collection of packets that needs to be sent from a source node to a 
destination node along given paths. Each packet is given with a prespeci- 
fied simple path (each node visited at most once), connecting the source to 
the destination, i.e., each packet is represented by the triplet (s,, t,, P,), 
where s, is the source node, t ,  is the destination node, and P, is the 
prespecified simple path. It takes one time unit for a packet to traverse an 
edge in d, and only one packet can traverse a given edge at a time. We 
will consider two versions of the packet routing problem: in this section, 
we address the problem where the paths are given, and in the next section, 
we address the problem where we need to select the paths. For the packet 
routing problem with fixed paths there are n,, packets that need to be sent 
along path P ,  for each simple path P. Let 9 denote the collection of all 
simple paths, for which n p  > 0. 

A scheduler decides which packets traverse any given edge and which 
packets wait in queue. The goal is to find a schedule which routes all 
packets from their sources to their destinations in minimal possible 
(makespan) time, given the initial number of packets nl, for each simple 
path P.  

Extensive research has been conducted on this problem (see Leighton 
191). It is easy to see that the packet routing problem with fixed paths is a 
special case of the job shop scheduling problem. Each edge can be seen as 
a processing machine. Each path is a sequence of machines (edges) that 
jobs (packets) need to follow. All the processing (traversing) times are 
equal to one. The job types correspond to paths in 9, and the stages 
correspond to edges within the path. Also, the quantity 

in the job shop scheduling problem corresponds simply to the number of 
paths crossing any given edge e. The number is at most 191. The conges- 
tion C, of a given edge e EA? is simply the number of packets that 
eventually cross e (the corresponding paths contain e):  

The maximal congestion C,,,, is max, C, and is clearly a lower bound on 
the optimal makespan time. 

Applying the synchronization algorithm for the job shop scheduling 
problem we obtain the following result. 



312 BERTSIMAS AND GAMARNIK 

THEOREM 2. Given a directed graph ( V , d ) ,  suppose for each P €9) 
there are n p  packets that need to follow path P .  There exists a schedule that 
brings all the packets to their destinations in time C ,  at most 

where 191 is the cardinality of the set 9) and L is the size of the longest simple 
path in the graph. In particular, 

as 

and C" is the optimal makespan time. 

6. THE PACKET ROUTING PROBLEM WITH 
PATH SELECTION 

In this section, we consider a more general version of the packet routing 
problem in which the collection of paths is not given a priori, but needs to 
be determined. Given a directed network ( V , d ) ,  for each pair of nodes 
k ,  1 E V there is a number of packets nkl (called packets of type ( k ,  I)) 
that need to be routed from source k to destination 1 via some path in the 
network. Let 9) denote the collection of all types in the network 

P =  { ( k , l ) : n k L >  o}. 

The scheduler is free to choose a path for each packet. The objective is to 
construct a schedule (which selects paths and chooses packets to traverse 
any given edge) so as to minimize the total time it takes to route all the 
packets to their destinations. Srinivasan and Teo [ 161 provide an algorithm 
that uses a linear programming problem that finds a schedule within a 
constant factor from the minimum makespan. 

In this section, we construct a schedule that has makespan C ,  5 C" + 
O(Jc"), where C" denotes the minimum makespan time. Therefore, our 
algorithm is asymptotically optimal as the total number of packets in- 
creases to infinity. 

In the previous sections we used a dynamic fluid relaxation to construct 
a schedule. We will now use a static multicommodity flow relaxation of the 
problem. For any feasible schedule, we define decision variables xf to be 
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the total number of type ( k ,  Z )  packets that traverse the edge (i, j ) .  We can 
assume without loss of generality that origin and destination nodes are not 
revisited by any packet. In particular, xfl = xt! = 0 for all k ,  I, i, j E V. 

For each edge (i, j )  E d the value 

represents the total time that edge (i, j )  is processing packets. Clearly, the 
optimal makespan time C" is at least max(i, j ) t , g  C j ,  j .  Therefore, the 
following multicommodity flow problem provides a lower bound on C" : 

minimize C,,, (17) 

subject to c x:: = n k l ,  ( k , l )  €9, ( 18) 

c .,"/I = ' k l >  ( k , l )  €9, (19) 

i : ( k , i ) s ~ d  

i : ( i ,O€* :d  

c x k l =  I' c x,",', ( k , l )  ~ 9 , i f k , Z ,  
j : ( j , i ) e , w '  P : ( i ,  r )  €J#. 

(20) 

c. ' > I  . = c xjj k l  , ( i , j )  E d ,  (21) 

Ci.j 5 'ma,, ( i , j )  E d ,  (22) 

Xt! ,Cjj  2 0 ,  

(23) 

( k ,  1 )  €9 

( i , j )  €d, ( k , Z )  €9. 

Eqs. (18)-(20) represent conservation of flow. The objective function value 
of this linear programming problem, denoted also by C,,,, is clearly a 
lower bound on the optimal makespan time C". The linear programming 
problem has Id1 191 variables and 1V1 191 + Id1 constraints. Thus, it can 
be solved in polynomial time even if the nkl are large. We next propose an 
algorithm that constructs a schedule with performance close to C,,,, when 
the number of packets is large. 

PACKET ROUTING SYNCHRONIZATION ALGORITHM 

1. Calculate the optimal value of C,,,, of the linear programming 
problem (17). 

Let R be a positive real value, to be specified later. For each 
interval [mR, (m + l)R],  m = O , l , .  . . ,[C,,,/Rl - 1, each edge ( i , j )  

2. 
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processes 
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packets of type ( k ,  I )  €9 and idles the remaining time. If there are less 
than uI"J jobs of type ( k , l )  available, then all available packets are 
processed and the rest of the dedicated time the edge idles, i.e., the edge 
does not process other packets. 

3. At time 

we process all remaining M packets sequentially, taking MP,,,, time units, 
where P,,,, is the length of the maximal simple path in the network. 

Note that the last step is inefficient, but as we will see the number of 
packets left in the network after time T is small. Let us first show that the 
algorithm is feasible. For each edge (i, j )  E& we have 

We will show first that the number of packets left in the network at time T 
is O ( c ) ,  by selecting Q appropriately. For each node i ,  let d(i)  
denote the outdegree of node i 

PROPOSITION 4. Let 

Then the total number of packets present in the network at time T defined in 
(25) is at most 

Pro08 We first show that for each ( k ,  I )  €9, the total number of 
packets of type ( k , O  present in node k at time T is not bigger than 
d(k)(Cm,,/Q). During each interval [mQ,(m + l)Q], m = 0,1,2, .  . . , 
[C,,,,/R1 - 1, the number of type ( k ,  I )  packets processed from node k is 
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equal to 

where the second inequality follows from (18). Therefore, the number of 
type ( k ,  I )  packets present in node k at time T = [CnlaX/RlR is at most 

We next consider any node i E V and any type (k,Z) such that i # k. 
Initially, there are no type ( k ,  I )  packets at node i. Let rn, be the largest 
integer such that there are no type ( k ,  I )  packets at node i at time m,R. 
The total number of type ( k ,  I )  packets that arrive into i during [rn,R, (rn, 
+ l )R]  is at most 

During each subsequent interval [ m R ,  ( m  + l )R] ,  m 2 m, the total num- 
ber of type ( k ,  I )  packets that arrive into i during [ m a ,  (rn + l )R]  is also 
at most 

The schedule will allocate at least 

time units to type ( k ,  I )  during each interval [ m a ,  (rn + l)R],  rn 2 rn, + 1. 
Thus, during each subsequent interval [mR,  ( m  + l)R],  m = m, + 1, m, 
+ 2 , .  . . the number of type ( k ,  I )  packets in node i increases by at most 

X;'R X;Q c 7- c 7  + d(i) = d(i), 

where the equality follows from (20). Combining with (26), the total 
number of type ( k ,  I )  packets at node i at time T is at most 
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By summing over all nodes i E I/ and types ( k ,  1 )  €9, we obtain that the 
total number of packets in the network at time T is at most 

We now select R to minimize the quantity above. Namely, set R 
= d m .  Then the total number of packets in the network at time T 
is at most 

Z I d I d m  + Idl=N 

I 

time realized by the algorithm. 

packets with origin k and destination 1 in time C ,  satisfying 

We next apply Proposition 4 to obtain an upper bound on the makespan 

THEOREM 3. The packet routing synchronization algorithm routes all nkl 

where C" is the optimal makespan time. In particular, 

and 

as 
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Pro08 From Proposition 4, at time T we have at most 

packets in the network. These packets can be routed to their destination 
by any trivial algorithm (as in Step 3 of the algorithm) within time at most 

where P,,,, is the length of the maximal simple path in the network. Since 
P,,,, 4 1V1, we obtain that the total makespan time of the algorithm is, 
using the bound (251, at most 

I 

7. CONCLUDING REMARKS 

We presented algorithms for the job shop scheduling and packet routing 
problems that are asymptotically optimal as the number of jobs (packets, 
respectively) in the system approaches infinity. Unlike asymptotically opti- 
mal algorithms that rely on probabilistic assumptions, the proposed algo- 
rithms make no probabilistic assumptions, and they are asymptotically 
optimal for all instances with a large number of jobs (packets, respectively). 

The algorithm for job shop scheduling and its analysis underscores the 
importance of the fluid control problem and it shows that for instances of 
the problem with a large number of jobs, it is the dynamic and not the 
combinatorial character of the problem that dominates. Interestingly, the 
dynamic character of the problem that can be captured by the fluid control 
problem has a very simple structure. The algorithm for packet routing 
underscores the importance of the idea already observed in other discrete 
optimization problems that continuous relaxations carry information about 
the discrete optimization problem that can be used to construct near 
optimal solutions. 

Finally, the results of the paper imply that in the limit of a large number 
of jobs (packets) the combinatorial structure of the problems, which is the 
essential difficulty of the problems, becomes increasingly unimportant as 
both problems are well approximated by continuous relaxations that are 
efficiently solvable. 
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